Coexistence of cycling and dispersing consumer species: Armstrong and McGehee in space.
نویسندگان
چکیده
Two competing consumer species may coexist using a single homogeneous resource when the more efficient consumer--the one having the lowest equilibrium resource density--has a more nonlinear functional response that generates consumer-resource cycles. We extend this model of nonequilibrium coexistence, as proposed by Armstrong and McGehee, by putting the interaction into a spatial context using two frameworks: a spatially explicit individual-based model and a spatially implicit metapopulation model. We find that Armstrong and McGehee's mechanism of coexistence can operate in a spatial context. However, individual-based simulations suggest that decreased dispersal restricts coexistence in most cases, whereas differential equation models of metapopulations suggest that a low rate of dispersal between subpopulations often increases the coexistence region. This difference arises in part because of two potentially opposing effects on coexistence due to the asynchrony in the temporal dynamics at different locations. Asynchrony implies that the less efficient species is more likely to be favored in some spatial locations at any given time, which broadens the conditions for coexistence. On the other hand, asynchrony and dispersal can also reduce the amplitude of local population cycles, which restricts coexistence. The relative influence of these two effects depends on details of the population dynamics and the representation of space. Our results also demonstrate that coexistence via the Armstrong-McGehee mechanism can occur even when there is little variation in the global densities of either the consumers or the resource, suggesting that empirical studies of the mechanisms should measure densities on several spatial scales.
منابع مشابه
Armstrong-McGehee mechanism revisited: competitive exclusion and coexistence of nonlinear consumers.
A number of mechanisms have been proposed to explain the coexistence of species engaging in exploitative competition. The Armstrong-McGehee mechanism relies on different levels of nonlinearity in functional response between competing consumers and their ability to avoid competitive exclusion through temporal resource partitioning during endogenously generated fluctuations. While previous studie...
متن کاملThe impact of consumer-resource cycles on the coexistence of competing consumers.
This article seeks to determine the extent to which endogenous consumer-resource cycles can contribute to the coexistence of competing consumer species. It begins with a numerical analysis of a simple model proposed by Armstrong and McGehee. This model has a single resource and two consumers, one with a linear functional response and one with a saturating response. Coexistence of the two consum...
متن کاملDynamical mechanism for coexistence of dispersing species.
Dispersal of organisms may play an essential role in the coexistence of species. Recent studies of the evolution of dispersal in temporally varying environments suggest that clones differing in dispersal rates can coexist indefinitely. In this work, we explore the mechanism permitting such coexistence for a model of dispersal in a patchy environment, where temporal heterogeneity arises from end...
متن کاملDynamical mechanism for coexistence of dispersing species without trade-offs in spatially extended ecological systems.
Most prior studies on the role of dispersal in the coexistence of competing species have emphasized the need for trade-offs between competitive and colonizing abilities for coexistence. Theoretical studies of the evolution of dispersal recently have revealed an alternative mechanism for the coexistence of species differing solely in dispersal rates in spatially extended systems. We present an a...
متن کاملCompetition between phytoplankton and bacteria: exclusion and coexistence.
Resource-based competition between microorganisms species in continuous culture has been studied extensively both experimentally and theoretically, mostly for bacteria through Monod and Contois "constant yield" models, or for phytoplankton through the Droop "variable yield" models. For homogeneous populations of N bacterial species (Monod) or N phytoplanktonic species (Droop), with one limiting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American naturalist
دوره 165 2 شماره
صفحات -
تاریخ انتشار 2005